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Entropy made ita first appearance in the 1865 paper 
by Clausius’ who obtained its explicit form by analyzing 
a reversible Carnot cycle of macroscopic transforma- 
tions of an ideal gas. The conceptual predecessor of 
entropy, however, appeared in Clausius’ early writings2 
in the guise of the term “disgregation”. As a concept, 
disgregation is more molecular in nature than is the 
mathematical formula he obtained for the entropy 
change d S  for a macroscopic heat transfer in a rever- 
sible cycle: d S  = dQ/T. He thought, for example, that 
on evaporation from a liquid a vapor requires a larger 
value of “disgregation” than the liquid owing to an in- 
creased disorder. Clearly, one can discern in this idea 
a molecular concept not apparent in the expression dS 
= dQ/T. Nonetheless, a clear link between the ma- 
croscopic and microscopic pictures of entropy is missing 
in his theory. 

Clausius also introduced the concept of uncompen- 
sated heat. It represents a kind of internal work per- 
formed by the system which is not compensated by an 
external source and thus tends to reduce the work done 
on the surroundings by the system. It is also positive 
but vanishes for reversible processes or at  equilibrium. 
When it is taken into account, one can prove the 
Clausius inequality d S  1 dQ/T where the heat ab- 
sorbed by the system is reckoned positive. For an iso- 
lated system dQ = 0 and therefore dS 1 0  from which 
originated the famous statement by Clausius that the 
entropy of the universe tends to a maximum. The 
precise nature of the uncompensated heat was not un- 
derstood until the theory of linear irreversible ther- 
modynamics was developed, and it remains a central 
topic in the study of irreversible thermodynamics. 

Clausiua’s molecular concept of entropy was put on 
a firmer mathematical basis by Boltzmand who intro- 
duced a statistical but formal expression for entropy in 
the form of his H-function. It is given in terms of the 
logarithm of the nonequilibrium distribution function 
obeying the Boltzmann equation. The Boltzmann 
equation, however, does not uriequivocally indicate the 
macroscopic variable dependence of the distribution 
function. Therefore Boltzmann’s expression for entropy 
is not illumunating as to its macroscopic variable de- 
pendence unless his equation is appropriately solved. 
Since it is a nonlinear integro-differential equation, its 
analytic solution is not generally possible, and as a 
consequence a perturbation theory is used. The 
Chapman-Enskog theory4 is the most commonly used 
method and seeks the solution in a power series of 
thermodynamic forces (e.g., temperature gradients, etc.) 
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and their spatial gradients. It gives correct results for 
various transport processes occurring near equilibrium. 
It also gives, albeit approximate, a formula for the en- 
tropy production which is considered to be a local 
representation for uncompensated heat. Since the 
processes must occur near equilibrium for the first order 
results to be applicable the entropy production obtained 
must be also deemed valid near equilibrium. The first 
order Chapman-Enskog solution therefore yields only 
a theory of linear irreversible thermodynamics, and the 
equilibrium Gibbs relation (GR) is a result of it:596 

TdS = dE + pdV - 2 &de, (GR) 

Most of natural phenomena, however, occur and are 
maintained at  a state far removed from equilibrium in 
which the linear laws of macroscopic processes are no 
longer valid. Living systems are the most important 
examples. There are other natural phenomena in the 
domain of inanimate systems that are of interest and 
importance. 

Prigogine and his co-workers’ have used the local 
equilibrium hypothesis which uses (GR) to calculate the 
entropy change for systems far removed from equilib- 
rium. In this hypothesis it is assumed that the entropy 
change accompanying a process occurring far from 
equilibrium can still be described by the equilibrium 
Gibbs relation (GR) in which variables are now made 
position- and time-dependent. This hypothesis obvi- 
ously poses a dilemma in logic since the equilibrium 
Gibbs relation holds for systems at equilibrium yet it 
is supposed to describe their evolution far from equi- 
librium. One may then ask, how valid is the local 
equilibrium hypothesis and is there something beyond 
it? As a first step in an attempt at  answering these 
questions, we initiated a series of investigationss on 
kinetic theory and irreversible thermodynamics of 
nonlinear transport processes, especially with their 
mutual connection in mind. The present account de- 
scribes the salient results of the endeavor. 
Modified Moment Method and Extended Gibbs 
Relation 

The kinetic theory line of approach to irreversible 
thermodynamics can be taken with the Boltzmann 
equationsa or a generalized Boltzmann equationsblc for 
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dense fluids for both of which there exists a statistical 
entropy formula since both kinetic equations satisfy the 
H-theorem. We will call the Boltzmann and the gen- 
eralized Boltzmann equation simply the kinetic equa- 
tions in this account. The Chapman-Enskog and the 
moment method9 may be used for approximate solu- 
tions of the kinetic equations, but the existing methods 
pay little attention to the entropy and the associated 
quantities, treating them on the same footing as the 
mechanical variables such as the internal energy, den- 
sity, fluxes, etc. An unfortunate consequence is that 
the entropy and the associated quantities are not 
guaranteed to fulfill the inviolable requirements of the 
thermodynamic laws. The linear approximation in the 
Chapman-Enskog and the moment method fortunately 
meet the requirements, but higher order approxima- 
tions encounter difficulty. The requirements are not 
generally met unless proper care is taken to satisfy them 
as is the case with the modified moment method de- 
scribed below. 

Mechanical variables are def ied in terms of particle 
velocities and positions whose time dependence can be 
obtained by solving the mechanical equations of motion 
such as Newton's. When their molecular expressions 
are suitably calculated by a rule of averaging over an 
ensemble of particles the mechanical variables are 
theoretically obtained. A similar procedure is used in 
molecular dynamics.l0 Unlike the mechanical variables 
the entropy, the entropy production, and the entropy 
flux are not averages of purely mechanical observables: 
They are inherently statistical and thus fundamentally 
different physical quantities from the mechanical var- 
iables. As well known, these statistical quantities are 
given in terms of the logarithm of the distribution 
function, but exact nonequilibrium distribution func- 
tions are impossible to find for physically realistic 
systems. As a consequence, we generally work with 
approximate solutions of one sort or another. If one 
ever hopes to acquire a theory of irreversible thermo- 
dynamics and a theory of transport processes consistent 
with the thermodynamic laws, the approximate solu- 
tions, however, must be such that the entropy and its 
associated quantities rigorously satisfy the thermo- 
dynamic laws. This is the tenet taken for the kinetic 
theory studies described in this account. The method 
of solving the kinetic equations under this tenet is called 
the modified moment method which is a modification 
of a method due to Maxwell." 

Consider a mixture of r chemically inert neutral and 
charged species contained in a volume and subject to 
an external electric field E(r',t) which changes slowly 
over the distance of molecular collision.M The number 
density of particle i at a point in the phase space is 
given by the probability distribution function fi obeying 
the kinetic equations. To see the significance of the 
kinetic equations let us take the Boltzmann equation. 
It may be looked upon as an equation describing the 

(8) Eu, B. C. (a) J.  Chem. Phys. 1980, 73, 2958; (erratum) 1983, 79, 
3607; (b) Ann. Phys. (N.Y.) 1979,118, 187; (c) J. Chem. Phys. 1981, 74, 
6362; (d) Zbid. 1986,82,4283; (e) Ann. Phys. (N.Y.) 1982,140,341; (0 In 
Recent Developments in Nonequilibrium Thermodynamics; J. Casas- 
Vazquez et at., E&.; Springer: Berlin, 1984, pp 176210; (g) J. Non-Equil. 
Thermodyn., in press. 

(9) Grad, H. Commun. Pure Appl. Math. 1949,2, 311. 
(10) See, for example: Ashurst, W. T.; Hoover, W. G. Phys. Reo. A 

(11) Maxwell, J. C. The Scientific Papers of J .  C. Maxwell; Cam- 
1975, 11, 658. 

bridge: Cambridge, 1890. 

change in population due to forward and reverse events 
of collisions and the net change in population due to 
the inflow and outflow of particles in the unit volume 
in the phase space. The Boltzmann equation states that 
these two factors are exactly balanced and is akin to a 
bimolecular reaction rate equation in chemical kinetics. 
A similar interpretation can be given to the generalized 
Boltzmann equation. We remark that the kinetic 
equations are not mechanical equations of motion like 
Newton's, but equations of motion for statistical 
quantity fi on the support of classical equations of 
motion. As such, they are not as fundamental as the 
Newtonian equations of motion, but a fundamental 
postulate on the mesoscopic level, nevertheless. 

The kinetic equations provide us with the mokcular 
expressions for entropy density 8, entropy flux J,, and 
entropy production u, which collectively form the en- 
tropy balance equationbr8 

(1) 

where d/dt is the time derivative in the reference frame 
movi-p with the fluid velocity ii, p is the mass density, 
and V = d / d i .  The statistical expression for S consists 
of the mean values+of the purely statistical quantities 
(In fi - 1) to which J, and u are also related. If we look 
upon the entropy as a kind of fluid, the entropy balance 
equation implies that the entropy change in a unit 
volume is equal to the s u m  of the entropy flowing into 
the volume from its surroundings and the entropy 
created within the volume. This source of entropy 
originates from the term accounting for molecular 
collisions in the kinetic equations. By Boltzmann's 
H - t h e ~ r e m , ~ ~ ~  the entropy production u is always pos- 
itive: u 2 0, the equality holding at  equilibrium. This 
inequality has been generally taken, without proof, as 
a mathematical representation of the second law of 
thermodynamics, but recently it has been shown to be 
indeed the case.12 Although (1) governs the evolution 
of entropy in space-time and it is important for ther- 
modynamics, it does not indicate its connection with, 
e.g., the Gibbs relation (GR). The modified moment 
method8 provides the connection for a nonequilibrium 
situation. 

Since the mass and the energy must be conserved for 
a closed system, a kinetic equation must bear the con- 
servation laws out. Indeed, the kinetic equations yield 
the conservation equations of mass density p(or specific 
volume u = l /p ) ,  mass fraction ci, momentum pG and 
internal energy density E:" 

dp(i,t)/dt = -a.pu'(r',t) or p(du/dt) = 9.6 (2) 

(3) 

p(d/dt)S(r',t) = -a*Ss(r',t) + u(r',t) 

p(dci/dt) = -a.Ji, (ci = pi/p) 

p(dii/dt) = -9.P + pzE ( Z  = cizi; zi = 
i 

charge/mass) (4) 

( 5 )  

where Si and pi are the mess flux and the mass density 
of species i, respecJively, J, is the total mass current of 
charged species, Q is the heat flux carried by a fluid 
mass, and P is the stress tensor which is nothing but 
the momentum flux, or to put it differently, the force 
per unit area exerted on the fluid. It has the dimension 
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of pressure and indeed is related to the hydrostatic 
pressure. Equation 2 is the well known equation of 
continuity; (3) is the concentration balance equation; 
(4) is the equation of motion for the fluid where pzE 
is the external force term. It indeed becomes the 
Newtonian equation of motion when P is put equal to 
zero. Equation 5 is? @al representation of the energy 
conservation law; -0.Q gives the increase in energy d_ue 
to an influx of heat from the surroundings; -P:Vii 
represents the work done on the system by the stress 
(force)(e.g., the pressure-volume work) and J,-E gives 
the Coulomb heating due to the mass current of charged 
particles throygk the system under the external field. 

The fluxes Ji, Q, and P in eq 2-5 are not determined 
by the conservation laws themselves. In the first order 
Chapman-Enskog theory4 there hold linear algebraic 
relations between the fluxes and thermodynamic forces 
such as temperature, concentration, and velocity gra- 
dients. In general, the fluxes obey their own evolution 
equations which may be called the constitutive equs- 
tions. It is convenient tojntroduce $_new heat-flux Q[ 
for species i defined by Q( = Qi -_hiJi where hi isshe 
enthalpy per unit mass of i. The Q is the sum of Qi's. 
Since heat is also carried by mass flow, the new heat 
flux represents the net heat flow. The stress tensor 
(momentum flux) P may be written as the sum of its 
components Pi which in turn may be decomposed to 
hydrostatic pressure pi  of species i, the excess trace part 
Ai and the traceless symmetric part P/'. The excess 
trace part is related to the dilatation of the fluid and 
therefore to the bulk viscosity and Pi0 is related to the 
shearing force and thus to the shear_vizcosity of the 
fluid. The constitutive equations for Ji, Q[, Ai, Pp, etc. 
may be derived from the kinetic equations and we will 
express them collectively in the form 

p(d&(*)/dt) = Zi + Ai(") (6) 
where the fluxes Ai(") are ordered as follo_ws: (Y = 1 
cprresponds to P:; CY = 2 to Ai; a = 3 to Q[; CY = 4 to 
Ji, etc. Equations 1-6 are the evolution equations for 
a set of macroscopic variables which we call (none- 
quilibrium) Gibbs variables: entropy, density, mass 
fractions, fluid velocity, internal energy, stress tensors, 
heat fluxes, and mass fluxes. Other macroscopic vari- 
ables may be added to them if necessary for describing 
the fluid properties. The dissipative terms Ai(") are 
related to the collision term in the kinetic equations and 
thus have a feature in common with u. They do not 
appear in the conservation eq 2-5, but do in the equa- 
tions for fluxes since the latter are nonconserved var- 
iables. The terms Ai(") and Zi(") are found to depend 
generally on the Gibbs variables. Their formulas are 
explicitly worked out in terms of Gibbs variables in ref 
8. To the lowest order approximation, Zi(a) is propor- 
tional to the thermodynamic forces driving the flux 
corresponding to it. 

Although (1)-(6) are derived from the kinetic equa- 
tions, their mutual relationship is still obscure. In the 
modified moment method an exact relationship be- 
tween them is sought, and we find it with the help of 
a pair of statements on the entropy production and the 
entropy flux. Before stating them, it is convenient to 
define the following derivatives: 
TI = (as/aE); p r l ~ l  = (as/au);  

-jiiz-l = (as/dci); x,(*)T-' = (7) 

where T will turn out to be the temperature, p the 
pressure, pi the chemical potential per unit mass of i 
and Xi(a) a generalized potential new to thermodynam- 
ics. They may be taken as shorthand notations for the 
derivatives for the moment. 

and J, are respectively given 
by the expression 

g = T-1 CXi(*)OAi(a) (8) 

We now assert that 

ia 

where 0 denotes a scalar product and ssnc is defined 
through the equation 

(10) 

Here are the thermodynamic forces which are in 
fact spatial gradients of the fluid velocity, temperature, 
and chemical potentials as well as the external potential. 
These factors are the driving forces for viscous flow, 
dilatation, heat conduction, and diffusion. In the linear 
theory the fluxes are proportional to subject to the 
Curie principle. The proportionality constants are the 
linear transport coefficients such as the viscosity, bulk 
viscosity, thermal conductivity, and diffusion coeffi- 
cients. Noticing that A?) is the dissipative part of the 
constitutive equation for a nonconservative flux 
we may write the entropy production in the following 
more suggestive form: 

a.ss,, = - T-'C (Zi(")OXi(") + cPi(o)OXi(a)) 
ia 

ia 

It implies that the entropy production is in essence the 
rate of change in entropy due to dissipative changes in 
the conservative fluxes. This interpretation is not af- 
forded by the linear irreversible thermodynamics en- 
tropy production. RayleighI3 and Onsager14 introduced, 
as a measure of energy dissipation in an irreversible 
process, a positive quadratic form of dissipative fluxes 
which is now called the Rayleigh-Onsager dissipation 
function (RODF). It is closely related to the entropy 
production. It can be shown that the entropy produc- 
tion (8) reduces to RODF when Ai(a) are approximated 
with linear forms in Xi(a)  and if Xi(a) are approximated 
by forms proportional to the fluxes. These approxi- 
mations amount to the statements that the entropy 
surface is paraboloidal with respect to the fluxes and 
that the transport processes are linear. Since these 
approximations may be justified near equilibrium, they 
imply that the RODF is a representation of entropy 
production near equilibrium. Equation 8 is then judged 
to be a nonlinear generalization of the RODF. It rep- 
resents one of the most important results of the mod- 
ified moment method and a cornerstone of the theory 
of irreversible thermodynamics presented here.8 The 
first term on the right of (9) has the same form as the 
classical form for the entropy flux, and the second term 
is new to thermodynamics and was introduced by 
MUllerl5 in an approximate form different from the 
present. 

On substitution of @)-(lo) into (1) and use of (2)-(6) 
we find an extension of the equilibrium Gibbs relation: 

(13) Lord Rayleigh. Theory of Sound; Dover: New York, 1945. 
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(15) Muller, I. Z .  Phys. 1967, 198, 329. 
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d S  dE dv d d A  when the processes are not steady in time. 
dt dt dt i d t  ia dt Theory of Irreversible Thermodynamics 

T - = - + p - - Pi-q  + Xi(a)a-@.(a) 

d dv d\E d In the modified moment metbod we make a pair of 
assertions (8) and (9) on (T and J ,  and then derive the 
extended Gibbs relation from the kinetic equations by 

x?)a- (11) using the entropy balance, the conservation, and the 
constitutive equations. Therefore the assertions may 
be considered to be the conditions for the validity of 
the extended Gibbs relation to hold. A theory of irre- 
versible  thermodynamic^"^ can be developed, on the 
phenomenological grounds, with the extended Gibbs 

= - E ,  + p - - 2  - -  f i e i  -ci + dt  dt d t  i dt 
d 

la dt 
where 

E ,  = E + z\k (electrochemical energy) 
jiei = pi + zi\k (electrochemical potential) 

and is the potential of E: E = -(d\E/%). This is 
called the extended Gibbs relation which reduces to 
(GR) if either Xi(a)  = 0 or d@*)/dt = 0. It is a gener- 
alization of the equilibrium Gibbs relation. Since there 
is no restriction whatsoever imposed on the extent of 
nonequilibrium, it holds away from equilibrium. I t  is 
another of the most important results of the modified 
moment method from the thermodynamic foundations 
viewpoint. Equations 7 and 11 together furnish the 
meanings for the entropy derivatives. For example, T 
is the temperature, but it must be emphasized that T1 
as a partial derivative of entropy depends on the values 
of the fluxes held constant during the differentiation. 
A similar comment applies to the other derivatives. The 
implication is that the temperature has an operational 
meaning even for a system away from equilibrium if the 
fluxes are held steady in the time span of measurement. 
For example, imagine a local volume in contact with the 
surroundings and there is a steady heat flux passing 
through the volume. Although the system is not in 
equilibrium, the temperature may be locally defined. 
This is exactly the situation we have in the case of 
Fourier heat conduction since one must then consider 
the temperature distribution.16 The extended Gibbs 
relation thus suggests a way to generalize the concept 
of T,  p ,  pi to a situation where the fluxes are steady. 

The local equilibrium hypothesis (GR) is recovered 
for the entropy chan e in the present theory, if the 
entropy derivatives X f a )  vanish or the fluxes are_ steady 
in the coordinate system moving with ii, i.e., (d+F)/dt) 
= 0. Therefore, if a steady state experiment is per- 
formed for the fluxes involved, then the equilibrium 
Gibbs relation describes the entropy change, but the 
constitutive relations for the fluxes are not necessarily 
linear in thermodynamic forces unless Xi(a) are linear 
in fluxes. The case where Xi(a)  all vanish corresponds 
to an equilibrium situation since Xi(a) = 0 means that 
there are no fluxes in the system. If one performs a 
nonsteady experiment as is in the case of dynamic 
shearingz1 or if the fluxes happen to oscillate as is the 
case of the current limit cycles (cf. the example with 
semiconductors discussed below), the local equilibrium 
hypothesis breaks down, and the extended Gibbs rela- 
tion must be used for describing the entropy change. 
These examples indicate the limitations of the local 
equilibrium hypothesis for dissipative systems especially 

relation in a manner similar to equilibrium thermody- 
namics. In such a theory the actual determination of 
the entropy production and the entropy flux is accom- 
plished by developing a theory of transport processes. 
In the phenomenological approach the kinetic theory 
procedure leading to the extended Gibbs relation from 
the kinetic equation may be reversed. This procedure 
can be expressed with a set of axioms as follows: 

Postulate I. There exists a set of Gibbs variables Z 
{E,v,ii,ci, by which the nonequilibrium (ther- 

modynamic) state of a macroscopic system is specified. 
The  Gibbs variables depend on t ime and position. 

Postulate 11. There exists a piecewise differentiable 
function S = pS called entropy which is extensive and 
depends on Z and which reaches a maximum, if the 
isolated system is brought to equilibrium. 

Postulate IIIa. The Gibbs variables obey the balance 
and evolution eq 2-6. 

Postulate IIIb. The dissipative term Ai(a) in (6) are 
positive in the sense that CiaXi(a)aAi(a) /T  I 0 where 
Xi (a)  is defined in (7). 

PoS_ulate IV. There exists a quantity called entropy 
flux J,, which is associated with transmission of heat, 
mechanical energy, and matter and also with intricate 
interplays of fluxes within the system. I t  is defined 
as in (9) and (10). 

The extended Gibbs relation follows from Postulates 
I and I1 with the help of (7) and, when combined with 
the rest of the postulates, yields the entropy balance 
equation (1). The result may be summarized by the 
following statement: 

Theorem. The entropy density satisfies the balance 
eq 1 where the entropy production is given by (8) and 
the entropy flux by (9) and (IO). 

We may put the gist of the axiomatic theory in other 
terms: Instead of the entropy balance equation the 
extended Gibbs relation becomes the starting point and 
(dS/dt) is described by the conservation laws (2)-(5) 
and the constitutive equations (6), which are con- 
structed such that (T as given by (8) is always positive. 
Then with the entropy flux consisting of the classical 
and nonclassical parts as in (9) it is possible to derive 
the entropy balance equation as a mathematical rep- 
resentation of the second law of thermodynamics. 

In the phenomenological theory it is necessary to 
treat the derivatives defined in (7) as a set of empirical 
relations for the tangents touching the entropy surface 

(16) Biot, M. A. Variational Principles in Heat Transfer; Oxford: 

(17) Eu, B. C. J.  Chem. Phys. 1981, 74, 2998. 
(18) Kirkwood, J. G.; Oppenheim, I. Chemical Thermodynamics; 

(19) Eu, B. C. Nonlinear Transport Coefficients and Boundary Layer, 

(20) Batchelor, G. K. Fluid Dynamics; Cambridge: London, 1967. 

in the space spanned by the Gibbs variab1e-S: By de- 
termining the empirical relations in terms of Gibbs 

we find the shape Of the entropy surface in 
the Gibbs space. Transport and thermodynamic data 
can be used to determine the derivatives in (7). Es- 
pecial1y, since the derivatives x i ( a )  and hi(a) give the 

London, 1970. 

McGraw-Hill: New York, 1961. 

unpublished. 

(21) Eu, B. C.; Ohr, Y. G. J .  Chem. Phys. 1984, 81, 2756. entropy production once Ai(a) are chosen appropriately 
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for the constitutive equations, the formalism presents 
a well-defined theory of constructing the entropy, the 
entropy production, and the entropy flux from the data 
on transport processes and fluid properties. We will 
discuss this aspect in what follows. 

Transport Processes and Irreversible 
Thermodynamics 

In equilibrium thermodynamics'* we measure heat 
capacity, compressibility, expansion coefficients, etc. 
from which the caloric equation of state, the equation 
of state, etc. can be constructed. This information in 
turn leads ultimately to the equilibrium entropy of the 
system or related quantities such as free energies, etc. 
It is then reasonable to say that the data gathering 
activity in equilibrium thermodynamics is just an effort 
to find the entropy as a storage and generator of in- 
formation on matter in equilibrium. The entropy is a 
generator of information since thermodynamic quan- 
tities may be derived from it; see the derivatives in (7). 
The properties mentioned above are static. But a great 
deal of laboratory effort is also devoted to gathering 
information on nonstatic properties. Transport coef- 
ficients of fluids represent an important source of in- 
formation on the nonstatic properties of fluids and 
solids. An important question for us to ask at this point 
is then, how do we understand transport processes in 
fluids and how do they fit  in the framework of the 
theory described above? Answering these questions 
with some examples will help us better understand and 
use the theory for practical problems encountered in 
the laboratory. Before taking up some specific exam- 
ples, we discuss the general concept and strategy that 
will guide us in carrying out the program. 

Information on the fluid properties, either fluid dy- 
namic or transport, is wholly contained in (2)-(6), the 
last of which can be constructed in the phenomeno- 
logical theory with the help of (11) and (8)-(10) such 
that the second law is fully satisfied. Various terms 
appearing in the constitutive equations (6) can be es- 
timated by means of the kinetic equations, and we find 
that the fluxes relax to their steady state value on a 
much faster time scale than the conserved variables that 
relax on the hydrodynamic time scale s vs. s 
or longer). This means that the conserved variables in 
the constitutive equations (6) remain constant over the 
time span in which the fluxes approach to their steady 
state value. The constitutive equations may then be 
in effect decoupled from (2)-(5) and solved before the 
latter are solved. This decoupling and solution of (6) 
subject to appropriate initial and boundary conditions 
yield algebraic constitutive relations between fluxes and 
the thermodynamic forces, and transport coefficients 
[Lij(*8' below], linear or nonlinear, can be identified from 
the relations: 

@/a) = @i(a)[{xj@)),{@j@) (t = 0)), p ,  E ,  c1 ,..., c,] 

= c Lij(a6) [ ( X p ) ] x ] ( y ) .  (12) 
16 

Here the transport coefficients generally depend on the 
thermodynamic forces. Substitution of this result into 
(3)-(5) yields a set of generalized hydrodynamic equa- 
tions whose solution provides various flow properties 
of the system.lg The Navier-Stokes and Fourier 
equations in hydrodynamicsm can be obtained from the 

generalized hydrodynamic equations when the consti- 
tutive relations are linear with respect to thermody- 
namic forces x 18). Therefore the usual hydrodynamic 
equations hold only near equilibrium. 

The constitutive equations (6) can be constructed 
with the help of transport data as indicated below. The 
extended Gibbs relation indicate! that Xi(a)  is the de- 
rivatives of 8 in the direction of This derivative 
is ?ow assumed to take a particular form as a function 
of We also take a suitable form for Ai(a) and Xi(a) 
such that the entropy production (8) is positive and the 
transport data in question are reproduced. (Generally 
speaking, such choice is guided by kinetic theory con- 
siderations. Kinetic theory plays an invaluable role in 
irreversible thermodynamics in that sense.) Then (6) 
is solved under the adiabatic assumption, in which the 
conserved variables are kept constant, and we get (12). 
If the transport coefficients so determined are in 
agreement with experiment, then the choices made for 
Xi(a), Zi(a), and A?) are judged reasonable. This in turn 
fixes the entropy production as well as the entropy 
surface itself, and we have gained information on the 
entropy and the associated quantities for the system at 
a nonequilibrium state. The solution of the generalized 
hydrodynamic equations then completes the task of 
finding the entropy when the velocity, temperature, and 
density profiles are obtained therefrom. 

Non-Newtonian Viscosity and Normal Stress 
Coefficients 

Knowledge of viscosity and normal stress coefficients 
is important for understanding the flow properties of 
a fluid. To obtain viscosity, etc., various components 
of the stress on the fluid are measured and analyzed. 
In general, there are nine components of a stress tensor. 
If the fluid is isotropic, the stress tensor is symmetric 
and the number of independent components is reduced 
to six. If the fluid is assumed to be incompressible, then 
the hydrostatic pressure is the same as the external 
pressure and the number becomes five. The problem 
can be further simplified if the geometry of flow is made 
simple. One typical example is a plane Couette flow. 
In this case the flow is occurring between two infinite 
parallel plates which may move in opposite directions 
(say, along the x-axis and the velocity gradient is in the 
y-direction). Then it can be shown2I that the stress 
tensor has three nonvanishing independent compo- 
nents, Pxy, P,, - Pyy, and Pyy - Pzz. The first component 
is related to the shearing and the last two to the ex- 
tension or the compression along the direction normal 
to the surface. They are called the primary and the 
secondary normal stress difference.22 Experiment 
shows that the shear viscosity and the normal stress 
coefficients decrease as the shear rate is increased and 
consequently the fluid becomes non-Newtonian. Such 
non-Newtonian behavior of fluids may be studied 
within the framework of the present theory. 

For the purpose we first derive the constitutive 
equation (6) for the stress tensor from a kinetic equa- 
tion. The constitutive equation contains the Newtonian 
viscosity qo and the zero shear-rate normal stress 
coefficients \kko, /i? = 1, 2. When vo and \ k k o  are treated 
as phenomenological parameters, the constitutive 
equation becomes empirical. With it we calculate the 

(22) Erlich, F. R. Rheology; Academic: New York, 1967. 
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shear rate dependence of nonlinear transport coeffi- 
cients (material functions) for non-Newtonian fluids. 

In the case of the steady plane Couette flow men- 
tioned, the steady state solution of the constitutive 
equation is sufficient. It is in the form of (12) from 
which the shear viscosity 7 and the normal stress 
coefficients \ k k ,  k = 1,2, are found. They are defined 
through the relations:" Pxy = 277, P,, - Pyy = -4\k1y2, 
Pyy - P,, = - 4927' where y is the shear rate y = 
-(du,/dy)/2 with u, denoting the velocity in the x-di- 
rection. The following simple formulas obtained from 
the constitutive equation (6) are found to give excellent 
agreement with experiment if vo, \ k k o  and the relaxation 
time T are adjusted to e ~ p e r i m e n t : ~ ~ ~ ~ ~  

7 = 70 sinh-' TX/TX; '@k = \ kk0(7 /7$ ' ,  k = 1, 2 
(13a,b) 

7 = [270(mrkBT/2)1/2]1/2/nkgTd (13c) 

with x = (y:y)ll2, m, and d denoting the reduced mass 
and the size parameter of the molecule, and n the 
number density. The formulas show that the viscom- 
etric functions 7 and +k  not only satisfy the relation 
\ k k / + k O  = (7/70)2 = (sinh-l x* /x*)~  where x* = 77, a 
dimensionless reduced shear rate, but also obey the 
corresponding state lawz3 in the sense that there are 
reduced universal viscometric functions depending on 
x* only. This feature is tested in Figure 1. The cor- 
responding state law is obeyed to a good accuracy for 
the materials examined. These viscometric functions 
satisfy the second law of thermodynamics since they are 
always positive. The theory along this line can be ap- 
plied to study other aspects of the rheological behavior 
of fluids such as visc~elasticity~~ and thermoviscous 
effects.25 

Rarefied Gases 
Rarefied gas is another example for which the linear 

transport theory becomes impotent. For example, the 
viscosity decreases with the density in contradiction 
with the Chapman-Enskog viscosity which is inde- 
pendent of the gas density. By using the constitutive 
equation (6) for the stress tensor provided by the 
Boltzmann equation, we find a form similar to (13a) for 
the shear viscosity for rarefied gases. If we take a hard 
sphere model for the molecule, then it is possible to 
show that the relaxation time T is proportional to the 
Knudsen number Kn which is the ratio of the mean free 
path of the molecule to the linear dimension of the 
container of the gas. Thus we find as Kn increases, the 
viscosity behaves asymptotically as 11 N (In Kn)/Kn.  
That is, 7 vanishes as the gas rarefies. This behavior 
is in agreement with experiment.26 Indeed, if the 
viscosity formula (13a) is used to calculate the velocity 
profiles for a plane Couette flow in the rarefied gas, the 
boundary layer gets increasingly thinner,lg vanishing 
like the inverse 2/3 power of the Reynolds number. 
This aspect appears to bear some important significance 
for rarefied gas dynamics. 

The thermal conductivity of rarefied plasmas at high 
temperature is very interesting and useful in connection 

(23) Ob, Y. G.; Eu, B. C. Phys. Lett. A 1984,101, 338. 
(24) Eu, B. C. J. Chem. Phys. 1985,82, 4683. 
(25) Eu, B. C.; Khayat, R.; Billing, G. D.; Nyeland, C., submitted for 

publication in Phys. Fluids. 
(26) Kogan, M. N. Rarefied Gas Dynamics; Plenum: New York, 1969. 
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- log( 7 / ? l o )  
Figure 1. In this figure are tested the corresponding state law, 
the relation qk/\kko = ( q / ~ ~ ) ~ ,  k = 1, 2, and the viscometric 
functions in (12a,b). A is for the primary normal stress coefficient 
and B is for the secondary normal stress coefficient. In the case 
of B the origin is shifted to the right by one unit. The symbols 
are as follows: 0 = Separan AB 30; 0 = Opanol B200; A = 2.5% 
polyacrylamide in 50/50 water-glycerine solution. 

with laser fusion and magnetic fusion. Basically the 
same theory as for rarefied neutral gases can be used 
for the purpose. By solving the heat flux evolution 
equations (6) derived from the Boltzmann equation, we 
can calculate the thermal conductivity of a plasma. It 
is found27 that thermal conductivity becomes much 
smaller than the Chapman-Enskog thermal conduc- 
tivity if the density is low and the temperature is high, 
the main determining factor being the Debye length. 
As the Debye length gets large, the collision frequency 
gets smaller and the thermal conductivity becomes 
smaller than the Chapman-Enskog prediction. The 
thermal conductivity thus calculated can be applied to 
study the heat injection into pellets in laser fusion ex- 
periments. A shows an encouraging result for 
the heat flux inhibition factor. 
Carrier Mobilities in Semiconductors 

It is also possible to study the electric field depen- 
dence of charge carrier mobilities in semiconductors 
subject to an external electric field. The information 
is of utility in describing semiconductor oscillators.28 

(27) (a) Eu, B. C. Physica A 1985,133, 120; (b) Phys. Fluids 1985,223, 

(28) Shaw, M.; Grubin, H.; Solomon, P. The Gum-Hilsum Effect; 
222. (c) Clause, J. P.; Balescu, R. Plasma Phys. 1982, 24, 1429. 

Academic: New York, 1979. 
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This exampleB is significant for the present theory of 
irreversible thermodynamics since it provides a non- 
trivial example for oscillating fluxes maintained by a 
steady external source of energy and there is a reduc- 
tion in the entropy production owing to the emergence 
(bifurcation) of a limit cycle. 

In the two-valley mode130 of conduction band in a 
semiconductor there are two valleys (subbands) of 
heavy and light effective electronic masses. The elec- 
trons of different effective masses are coupled through 
their interactions with phonons and through the colli- 
sion between themselves. Through such interactions 
the electrons move in and out of the two valleys of 
different effective masses. As a result the charge car- 
riers become alternatively faster and slower depending 
on which valley they are moving in, and the current 
consequently oscillates. This model can be translated 
into a pair of mass flux evolution equations for charge 
carriers. By solving these equations we can find the 
fluxes as a function of time and the field strength, and 
finally the mobilities of the carriers and the current- 
voltage characteristics. 

As the electric field strength increases, the current- 
voltage characteristic begins to deviate from the Ohmic 
behavior and eventually becomes unstable, and there 
emerges (bifurcates) a limit cycle as the critical 'field 
strength is passed. In the course of a limit cycle the 
carriers pass through the regions of high and low en- 
tropy production in the mass flux space. When the 
entropy production is averaged over a period, the av- 
erage entropy production is found to be smaller than 
the entropy production that the system would have 
produced if it had remained at the unstable steady 
state from which the limit cycle has bifurcated. 

This phenomenon can be understood if we examine 
the geometrical shape of the entropy production surface 
in the flux space. Actual calculation shows that the 
entropy production surface has regions where the en- 
tropy production is lower than that of the unstable state 
and regions where it is higher than the latter, but the 
carriers spend most of a period in the low entropy 
production regions, the result being a lowered entropy 
production on the average; see Figure 2. This feature 
is potentially relevant as a possible paradigm for bio- 
logical evolution since by evolving into an oscillatory 
motion a system can reduce the entropy production or 
the energy d i~s ipa t ion .~~ It also distinguishes the 
present example from those considered in the two 
previous examples since the entropy productions for the 
processes considered therein are basically paraboloidal 
in the flux space and thus without a structure that 
allows emergence of a limit cycle. On the other hand, 
the entropy production for a system exhibiting a limit 
cycle is nonmonotonic and contains more than one re- 
gion of minimum. At least for the problem studied for 
this example there clearly is some correlation between 
the topology of the trajectory in the flux space and the 
entropy production surface. This feature is attractive 
and potentially significant, since such a correlation can 
be useful for devising evolution equations for fluxes on 
experimental and intuitive grounds. 

(29) Ali, J.; Eu, B. C. J .  Chem. Phys. 1984,80, 2063; 1986,81,4401. 
(30) Butcher, P. H.; Rep. B o g .  Phys. 1963, 30, 97. 
(31) Richter, P. H.; Rehmus, P.; Ross, J. B o g .  Theoret. Phys. 1981, 

66, 385. 

Reduced Tkne 
Figure 2. The relative entropy production over two periods of 
the limit cycle. The zero of the ordinate corresponds to the 
entropy production at the unstable steady state from which the 
limit cycle has bifurcated. The sharp peak corresponds to the 
impulsive energy dissipation required for the carrier to go over 
the mountain ridge in the entropy production surface that has 
two valleys and a mountain ridge in between. 

Future Work and Conclusion 
Most of interesting natural phenomena are in the 

domain of nonlinear processes, and the irreversible 
thermodynamic formalism described here offers an 
avenue of approach to them in a way fully consistent 
with the thermodynamic laws. Since the theory is 
general, it can be applied to any natural processes, the 
examples presented being only a few cases studied so 
far. The theory can be cast to deal with processes oc- 
curring in heterogeneous systems which possibly include 
cellular systems and mechanical engines. The present 
theory can be used to derive a set of global evolution 
equations for such systems. 

When the solutions of constitutive equations 6 are 
substituted into the conservation equations (2)-(5), 
there follow generalized hydrodynamic equations, whose 
solutions are expected to yield various flow properties 
of the fluid under consideration. There are indications 
that the generalized hydrodynamic equations are ca- 
pable of predicting the boundary layer profiles and the 
velocity and temperature profiles under steep thermo- 
dynamic gradients which often occur in rarefied gases, 
non-Newtonian fluids and fusion plasmas. The present 
theory can be used for studying such situations. 

The extended Gibbs relation (11) can be a starting 
point for purely phenomenological approach to ther- 
modynamics of irreversible processes," but study in 
that direction has not been much pursued hitherto 
although it deserves more serious efforts and attention. 

In this Account we have presented an extension of 
the equilibrium Gibbs relation together with a general 
expression for entropy production that gives a new in- 
terpretation for it, and an entropy flux formula similar 
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to Muller’s. Measurements of transport properties are 
seen equivalent to those of thermodynamic properties 
such as heat capacities, compressibilities, etc., in the 
sense that they ultimately provide information on the 
entropy and the entropy production of the system. The 
measurements of thermodynamic and transport prop- 

erties then may be regarded as efforts to construct the 
entropy, the entropy production, and the entropy flux, 
and especially the entropy as a storage and a generator 
of information on matter. The formalism described 
provides a theoretical framework and strategy by which 
to carry out such efforts. 


